Vivekananda College of Engineering & Technology, Puttur

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]

Affiliated to VTU, Belagavi & Approved by AICTE New Delhi < BS > Rev 1.10

CRM08

CONTINUOUS INTERNAL EVALUATION-1

Dept: BS (MAT)	Sem/Div: IV/ A & B	Sub: Engineering Statistics &	S Code: 18EC44			
		Linear Algebra				
Date: 25-05-2021	Time: 3:00 PM – 4:30PM	Max. Marks: 50	Elective: N			
Note: Answer any two full questions, choosing one full question from each part.						

Q.	Ν	Questions				Marks	RBT	COs		
		PART-A								
1 a Given										
		y_k	2.1	3.2	4.8	5.4	6.9			
		$P(y_k)$	0.2	0.21	0.19	0.14	0.26	8	L2	CO1
		(a) Find the mean and variance of Y								
		(b) If $X = Y^2$	2 + 1 what a	are mean ar	nd variance	of X				
	b	Define Binomial distribution. Obtain the characteristic function of a				unction of a				
		binomial random variable and using the characteristic function			ic function	8	L3	CO1		
		derive its mean and variance								
	с	Let V be the	e set of all j	pairs (x, y)	of real num	bers and F	be a field			
		of real num				-	whether V			
		is a Vector	-			ers or not?				
		(i) $(x, y) + ($		$x + x_1, y + y$	y ₁)			9	L1	CO4
		c(x, y) = (c x, c y)								
		(ii) $(x, y) + (x_1, y_1) = (x + x_1, y + y_1)$ c(x, y) = (0, cy)								
		$(iii) (x, y) - (0, cy) = (x + x_1, y + y_1)$								
		$c(x, y) = (c^2 x, c^2 y)$								
	OR									
2	a	The following	ing is the Pl	DF for the r	andom vari	able U				
		$f_{-}(u) = \int c e$	$\exp\left(-\frac{u}{2}\right)$ for	or $0 \le u <$	1 Find the	value that	e must	8	L2	CO1
		$f_{U}(u) = \begin{cases} c \exp\left(-\frac{u}{2}\right) & \text{for } 0 \le u < 1\\ 0 & \text{otherwise} \end{cases}$. Find the value that c must					c musi			
		have and evaluate $F_{II}(0.5)$								
	b	The random	n variable X	K has the fol	llowing dist	ribution as	show in			
		the table. D	etermine (a	a) k (b) n	nean (c) variance	of X			
		x -2	-1	0 1	2 3			8	L1	CO1
		P(x) = 0		0.2 2k	0.3 k					
		I (II) 0		0.2 2 K	0.0 K					
	c	(a) Define vector space over the field of scalars.								
		(b) Show that the set of all real symmetric matrices of order 'n' is a								
		vector space over the field of real numbers with respect to matrix						9	L1	CO4
		addition and multiplication of a matrix by a scalar, 'n' being fixed								
		integer.								

Patamats.

Atamals.

Prepared by: M Ramananda Kamath

Viveka	nanda College of Engir	neering & Technology,	Puttur		
[A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]					
Affiliated to VTU, Belagavi & Approved by AICTE New Delhi					
CRM08	Rev 1.10	< BS >	< 23 - 05 - 2021 >		

CONTINUOUS INTERNAL EVALUATION-1

		PART-B			
3	a	Let X is a random variable and $F_X(x)$ is the distribution function of X. (i) Show that $P(a < X \le b) = F_X(b) - F_X(a)$ (ii) If Y is a random variable such that $Y=aX + b$ Show that $E[Y]=a E(X) + b$ and $var[Y] = a^2 var[X]$	8	L2	CO1
	b	Given the discrete random variable X with $f_X(x) = 0.37\delta(x) + 0.16 \delta(x - 1) + 0.29 \delta(x - 2) + 0.18\delta(x - 3)$ and the event B={X > 1} Find the PDF and CDF conditioned by the event B.	8	L2	CO1
	c	 (a) Define a field (b) A scalar multiplication in V is defined as a. x = x^a, where a ∈ R x ∈ V. Show that the following conditions hold in V. (i) (a + b). x = x^{a+b} (ii) a. (x₁ × x₂) = (x₁ × x₂)^a (iii) a. (b. x) = (ab) ⋅ x (iv) 1. x = x, where 1 ∈ R 	9	L1	CO4
		OR			
4	a	The random variable X has the expectation $\mu_X = 37.9$ and S.D $\sigma_X=10.3$. The random variable Y is obtained from X using $Y=0.6X^2 + 7.9X + 107.1$. Find (a) $E[X^2]$ (b) mean of Y	8	L1	CO1
	b	If the probability of producing a defective screw is 0.01 what is the probability that a lot of 100 screws will contain (i) more than 2 defective screws (ii) atmost 4 defective screws	8	L2	CO1
	c	Verify whether or not $\mathbb{R}^n = \{(a_1, a_2, \dots, a_n)/a_1, a_2,, a_n \in \mathbb{R}\}$ the set of all n-tuples of real numbers forms a vector space over the field of real numbers with point wise addition and scalar multiplication defined as follows: $(a_1, a_2, \dots, a_n) + (b_1, b_2, \dots, b_n) = (a_1 + b_1, a_2 + b_2, \dots, a_n + b_n)$ and c $(a_1, a_2, \dots, a_n) = (ca_1, ca_2, \dots, ca_n)$ for all $a_1, a_2, \dots, a_n, b_1, b_2, \dots, b_n, c \in \mathbb{R}$	9	L1	CO4

Patamats.

Prepared by: M Ramananda Kamath

Atamala.

HOD: M Ramananda Kamath